
Page	1/6 ©	Copyright	by	Travis	J.	Lawrence	and	Dana	L.	Carper

Introduction	to	Scientific	Computing:	A	Crash	Course

Presented	by	Travis	J	Lawrence	and	Dana	L	Carper
Quantitative	and	Systems	Biology
University	of	California,	Merced

Worksheet	2.3

In	this	worksheet	we	are	going	to	continue	working	with	the	genome	annotation	script	from	worksheet
2.2	and	revisit	a	question	from	worksheet	1.3.2	using	the	species	occurrence	data.	We	are	going	to
expand	the	functionality	of	scripts	using	flow	control,	membership	testing,	and	dictionaries.

Practice	with	dictionaries	and	flow	control

We	are	going	to	use	a	Jupyter	notebook	to	learn	the	basics	of	working	with	dictionaries	and	flow
control.

1.	 Open	a	new	Jupyter	notebook	and	create	this	dictionary:

example	=	{"mRNA_count":56,	"gene_names":["Gene1",	"Gene2"]}

2.	 Add	this	key:value	pair	 "gene_count":	24 	to	the	dictionary	in	 question	1

3.	 Use	this	dictionary	to	calculate	the	ratio	 mRNAs 	to	 genes 	and	print	the	ratio.

4.	 Append	 Gene3 	to	the	 value 	of	the	gene_names	 key .

5.	 Add	these	key:value	pairs	to	the	dictionary	 "tRNA":0 ,	 "miRNA":[],	"rRNA":	"" ,	
"snoRNA":{} .

6.	 Write	a	for	loop	using	the	dictionary	as	the	 sequence_variable .	Print	the	 current_value .
What	is	the	for	loop	iterating	over?

7.	 Modify	your	loop	in	 question	6 	to	print	the	dictionary	value	for	each	 key 	instead.

8.	 Using	an	 if 	statement	modify	your	loop	in	 question	7 	to	print	the	 value 	if	the	 key 	is	equal
to	 "mRNA_count" .

9.	 Modify	the	 if 	statement	in	 question	8 	to	print	the	 value 	if	the	 key 	contains	the	string	
"gene" .	You	can	use	membership	testing	to	do	this.

10.	 Add	an	 else 	clause	to	your	if	statement	that	prints	the	 key

11.	 Replace	your	 if 	statement	from	 question	10 	with	the	one	below	and	run	the	code.	The	 key
in	the	below	 if 	statement	is	the	dictionary	key	from	the	loop	variable.	Do	you	see	a	pattern	in
the	 values 	that	test	as	false?

Page	2/6 ©	Copyright	by	Travis	J.	Lawrence	and	Dana	L.	Carper

if	(example[key]):
			print(key,	"True")
else:
			print(key,	"False")

12.	 We	can	also	use	membership	testing	to	see	if	a	dictionary	contains	a	 key .	The	structure	of	this
membership	test	is:	 if	(key	in	dictionary): .	Write	an	if	statement	to	see	if	our	dictionary
contains	the	 key 	 "rRNA" .

Genome	Annotations

In	the	section	we	are	going	to	modify	your	original	genome	annotation	file	to	take	advantage	of	 if
statements	and	dictionaries.	Open	your	script	from	worksheet	2.2	(genome_annotation.py)	and
remove	any	code	that	does	not	deal	with	reading	the	file	and	splitting	the	current	line	into	fields.	Your
code	should	look	similar	to	this:

import	sys
f	=	open(sys.argv[1],	"r")
for	line	in	f:
				line	=	line.strip()
				spline	=	line.split()

13.	 Remember	from	worksheet	1.3.1	that	comment	lines	started	with	a	 # .	Write	an	 if 	statement	so
that	only	lines	that	do	not	start	with	a	 # 	are	stripped	of	leading	and	trailing	whitespace	and	split
into	fields.	There	are	two	different	ways	to	write	the	conditional	statement.	The	first	uses	 == 	and
the	second	uses	the	string	method	 startswith ,	and	both	styles	need	to	use	the	 not 	logical
operator.

14.	 When	we	encounter	a	comment	line	what	we	really	want	to	do	is	ignore	it	and	move	to	the	next
line	in	the	file.	Add	an	 else 	statement	to	your	code	from	 question	13 	with	the	keyword	
continue 	in	the	 else 	code	block.	What	does	the	 continue 	keyword	seem	to	do?

At	this	point	your	code	should	look	similar	to	this:

import	sys
f	=	open(sys.argv[1],	"r")
for	line	in	f:
				if	(not	line.startswith("#")):
							line	=	line.strip()
							spline	=	line.split()
				else:
						continue

15.	 Now	we	are	going	to	add	a	dictionary	to	keep	track	of	the	number	of	annotations	for	each
chromosome.	Add	an	empty	dictionary	to	your	script	named	 chromosome 	right	after	your	import
statement.	Add	code	after	the	 if/else 	statement,	but	still	within	the	loop	block,	to	use	the	

Page	3/6 ©	Copyright	by	Travis	J.	Lawrence	and	Dana	L.	Carper

chromosome	number 	field	as	the	 key 	for	the	dictionary	and	increase	the	 key's 	 value 	by
one.	Run	your	script.	Did	you	get	a	similar	error	message	to	the	one	below?	This	happened
because	the	 key 	did	not	exist	in	the	dictionary	so	there	is	no	 value 	to	increase	by	one.	We	will
fix	this	in	the	next	question.

Traceback	(most	recent	call	last):
		File	"<stdin>",	line	1,	in	<module>
KeyError:	'test'

Before	continuing	to	 question	15 	ensure	that	your	code	looks	similar	this:

import	sys
chromosome	=	{}
f	=	open(sys.argv[1],	"r")
for	line	in	f:
				if	(not	line.startswith("#")):
							line	=	line.strip()
							spline	=	line.split()
				else:
						continue
				chromosome[spline[0]]	+=	1

16.	 To	gain	the	functionality	that	we	want	with	the	dictionary	we	need	to	check	if	the	 key 	exists	and
add	it	if	it	does	not.	We	tested	if	a	key	existed	in	 question	12 	and	can	reuse	similar	code.
Replace	our	original	statement	incrementing	the	dictionary	 value 	by	one,	and	use	an	 if
statement	to	test	if	the	key	exists	and	if	it	does,	increment	the	value	by	one.	If	it	doesn't	add	the	
key 	with	the	 value 	being	equal	to	 0 	and	then	increment	the	value	by	one.

We	should	now	have	a	fully	functional	annotation	parser	that	counts	the	number	of	records	per
chromosome.	Before	moving	on	your	code	should	look	similar	to	this:

import	sys
chromosome	=	{}
f	=	open(sys.argv[1],	"r")
for	line	in	f:
				if	(not	line.startswith("#")):
							line	=	line.strip()
							spline	=	line.split()
				else:
						continue
				if	(spline[0]	in	chromosome):
							chromosome[spline[0]]	+=	1
				else:
							chromosome[spline[0]]	=	0
							chromosome[spline[0]]	+=	1

17.	 Add	code	to	loop	through	the	 chromosome 	dictionary	and	print	the	 key:value 	pairs	to	the

Page	4/6 ©	Copyright	by	Travis	J.	Lawrence	and	Dana	L.	Carper

screen.	This	code	should	run	after	you	have	finished	parsing	the	file.

18.	 Modify	your	loop	in	 question	17 	to	only	print	the	chromosome	with	the	highest	number	of
annotation	records.	You	need	to	setup	two	variables,	one	to	keep	track	of	the	chromosome	with
the	highest	annotation	record	count	seen	so	far	and	the	second	to	hold	the	record	count.	You	will
need	to	us	an	 if 	statement	to	update	these	variables.

Before	moving	on	check	your	code	against	the	example	solution	below.	It	should	contain	similar	logic.

import	sys
chromosome	=	{}
f	=	open(sys.argv[1],	"r")
for	line	in	f:
				if	(not	line.startswith("#")):
							line	=	line.strip()
							spline	=	line.split()
				else:
						continue
				if	(spline[0]	in	chromosome):
							chromosome[spline[0]]	+=	1
				else:
							chromosome[spline[0]]	=	0
							chromosome[spline[0]]	+=	1

highest_chromosome_name	=	""
highest_chromosome_count	=	0
for	key	in	chromosome:
				if	(chromosome[key]	>	highest_chromosome_count):
							highest_chromosome_name	=	key
							highest_chromosome_count	=	chromosome[key]

print(highest_chromosome_name,	highest_chromosome_count)

21.	 We	are	now	going	to	add	code	that	will	allow	us	to	count	the	number	of	annotation	records	for
each	 feature_type 	per	chromosome.	To	do	this	we	will	use	a	nested	dictionary.	A	nested
dictionary	has	dictionaries	as	its	 values .	This	kind	of	data	structure	is	useful	when	you	have
hierarchal	data.	This	is	an	advance	topic	so	if	you	are	having	trouble	grasping	the	concept	of	a
nested	dictionary	at	first	do	not	worry.	We	are	going	to	build	our	nested	dictionary	in	a	way	so	that
the	highest	level	 keys 	are	 chromosome	number 	and	its	 values 	are	a	second	dictionary
whose	 keys 	are	 feature_types 	and	values	are	the	count	for	that	 feature_type .	You	can
access	nested	dictionary	values	with	this	syntax:	
chromosome[chromosome_name][feature_type]	+=	1 .	In	this	example	the	 key 	for	the	top
dictionary	is	 chromosome_name ,	which	gives	us	access	to	its	 value ,	that	happens	to	be	a
second	dictionary	who's	 key 	in	this	example	is	 feature_type .	Before	starting	this	problem
either	edit	your	code	or	create	a	new	script	with	the	code	below:

import	sys
chromosomes	=	{}

Page	5/6 ©	Copyright	by	Travis	J.	Lawrence	and	Dana	L.	Carper

f	=	open(sys.argv[1],	"r")
for	line	in	f:
				if	(not	line.startswith("#")):
							line	=	line.strip()
							spline	=	line.split()
				else:
						continue

				if	(spline[0]	in	chromosome):
								chromosome[spline[0]]	+=	1
				else:
								chromosome[spline[0]]	=	0
								chromosome[spline[0]]	+=	1

We	need	to	change	the	code	within	the	 if/else 	statement	to	work	with	our	nested	dictionary.
Instead	of	adding	one	if	the	 chromosome_name 	 key 	already	exists	we	need	to	add	a	nested	 if
statement	or	to	check	if	the	 feature_type 	key	of	the	nested	dictionary	exists.	If	both	exist	increment
the	 feature_type 	value	by	one.	If	not	add	the	necessary	keys	and	increment	the	 feature_type
by	one.	Remember	that	the	 feature_type 	is	the	third	field	in	the	line.	Attempt	to	do	this	now	and
compare	your	work	to	the	example	below.

import	sys
chromosomes	=	{}
f	=	open(sys.argv[1],	"r")
for	line	in	f:
				if	(not	line.startswith("#")):
							line	=	line.strip()
							spline	=	line.split()
				else:
						continue

				if	(spline[0]	in	chromosome):
								if	(spline[2]	in	chromosome[spline[0]]):			
												chromosome[spline[0]][spline[2]]	+=	1
								else:
												chromosome[spline[0]][spline[2]]	=	1
				else:
								chromosome[spline[0]]	=	{}
								chromosome[spline[0]][spline[2]]	=	1

Species	Occurrence	Data

You	have	been	introduced	to	all	the	tools	you	need	to	write	scripts	for	basic	data	analysis.	In	this
section	we	are	going	to	revisit	a	problem	from	worksheet	1.3.2	where	we	identified	the	families	with	the
highest	and	lowest	number	of	records	without	a	species	identification.	We	could	not	normalize	by	the
total	number	of	records	for	the	family	using	command	line	tools,	but	we	can	with	Python.	There	will	be
no	guidance	on	how	to	solve	this	problem.	I	have	provided	the	problem	statement	below:

Page	6/6 ©	Copyright	by	Travis	J.	Lawrence	and	Dana	L.	Carper

22.	 Using	Python	and	the	 Plantae.csv 	file	which	family	had	the	most	records	not	identified	to
species?	Which	had	the
least?	This	is	absolute	count	data	which	can	be	misleading	because	of	total	number	of	records	for
each	family.	Normalize	the	number	of	records	missing	species	identification	by	dividing	by	the
total	number	of	records	for	that	family.	Which	family	had	the	highest	normalized	number	of
missing	species?	Which	had	the	lowest?

