Introduction to Scientific Computing: A Crash Course

Presented by Travis J Lawrence and Dana L Carper
Quantitative and Systems Biology
University of California, Merced

Worksheet 2.3

In this worksheet we are going to continue working with the genome annotation script from worksheet
2.2 and revisit a question from worksheet 1.3.2 using the species occurrence data. We are going to
expand the functionality of scripts using flow control, membership testing, and dictionaries.

Practice with dictionaries and flow control

We are going to use a Jupyter notebook to learn the basics of working with dictionaries and flow
control.

1. Open a new Jupyter notebook and create this dictionary:

example = {"mRNA_count":56, "gene_names":["Genel", "Gene2"]}

2. Add this key:value pair "gene_count": 24 to the dictionary in question 1
3. Use this dictionary to calculate the ratio mRNAs to genes and print the ratio.
4. Append Gene3 tothe value of the gene_names key .

5. Add these key:value pairs to the dictionary "tRNA":0 , "miRNA":[], "rRNA": "',
"snoRNA":{} .

6. Write a for loop using the dictionary as the sequence_variable . Printthe current_value.
What is the for loop iterating over?

7. Modify your loop in question 6 to print the dictionary value for each key instead.

8. Usingan if statement modify yourloop in question 7 to printthe value ifthe key is equal
to "mRNA_count" .

9. Modify the if statementin question 8 to printthe value ifthe key contains the string
"gene" . You can use membership testing to do this.

10. Add an else clause to your if statement that prints the key

11. Replace your if statementfrom question 10 with the one below and run the code. The key
in the below if statement is the dictionary key from the loop variable. Do you see a pattern in
the values that test as false?

Page 1/6 © Copyright by Travis J. Lawrence and Dana L. Carper

if (examplelkeyl):
print(key, "True")

else:
print(key, "False")

12. We can also use membership testing to see if a dictionary contains a key . The structure of this
membership testis: if (key in dictionary): . Write an if statement to see if our dictionary
contains the key "rRNA".

Genome Annotations

In the section we are going to modify your original genome annotation file to take advantage of if
statements and dictionaries. Open your script from worksheet 2.2 (genome_annotation.py) and
remove any code that does not deal with reading the file and splitting the current line into fields. Your
code should look similar to this:

import sys

f = open(sys.argv([1], "r")

for line in f:
line = line.strip()
spline = line.split()

13. Remember from worksheet 1.3.1 that comment lines started with a # . Write an if statement so
that only lines that do not start with a # are stripped of leading and trailing whitespace and split

into fields. There are two different ways to write the conditional statement. The first uses == and
the second uses the string method startswith , and both styles need to use the not logical
operator.

14. When we encounter a comment line what we really want to do is ignore it and move to the next
line in the file. Add an else statement to your code from question 13 with the keyword
continue inthe else code block. What does the continue keyword seem to do?

At this point your code should look similar to this:

import sys
f = open(sys.argv[1], "r")
for line in f:
if (not line.startswith("#")):

line = line.strip()

spline = line.split()
else:

continue

15. Now we are going to add a dictionary to keep track of the number of annotations for each
chromosome. Add an empty dictionary to your script named chromosome right after your import
statement. Add code after the if/else statement, but still within the loop block, to use the

Page 2/6 © Copyright by Travis J. Lawrence and Dana L. Carper

chromosome number field as the key for the dictionary and increase the key's value by
one. Run your script. Did you get a similar error message to the one below? This happened
because the key did not exist in the dictionary so there is no value to increase by one. We will
fix this in the next question.

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'test'

Before continuing to question 15 ensure that your code looks similar this:

import sys
chromosome = {}
f = open(sys.argv[1], "r")
for line in f:
if (not line.startswith("#")):
line = line.strip()
spline = line.split()
else:
continue
chromosome[spline[0]] += 1

16. To gain the functionality that we want with the dictionary we need to check if the key exists and
add it if it does not. We tested if a key existed in question 12 and can reuse similar code.
Replace our original statement incrementing the dictionary value by one, and use an if
statement to test if the key exists and if it does, increment the value by one. If it doesn't add the

key with the value being equalto @ and then increment the value by one.

We should now have a fully functional annotation parser that counts the number of records per
chromosome. Before moving on your code should look similar to this:

import sys
chromosome = {}
f = open(sys.argv[1], "r")
for line in f:
if (not line.startswith("#")):
line = line.strip()
spline = line.split()
else:

continue
if (splinel[@] in chromosome):
chromosome [spline[0]] += 1
else:
chromosome[spline[0]] =
chromosome [spline[0]] += 1

17. Add code to loop through the chromosome dictionary and print the key:value pairs to the

Page 3/6 © Copyright by Travis J. Lawrence and Dana L. Carper

screen. This code should run after you have finished parsing the file.

18. Modify your loop in question 17 to only print the chromosome with the highest number of
annotation records. You need to setup two variables, one to keep track of the chromosome with
the highest annotation record count seen so far and the second to hold the record count. You will
need tous an if statement to update these variables.

Before moving on check your code against the example solution below. It should contain similar logic.

import sys
chromosome = {}
f = open(sys.argv([1],
for line in f:
if (not line.startswith("#")):
line = line.strip()
spline = line.split()
else:
continue
if (spline[@] in chromosome):
chromosome [spline[0]] += 1
else:
chromosome[spline[0]] = @
chromosome [spline[0]] += 1
highest_chromosome_name = ""
highest_chromosome_count = 0
for key in chromosome:
if (chromosome[key] > highest_chromosome_count):
highest_chromosome_name = key
highest_chromosome_count = chromosome [key]

print(highest_chromosome_name, highest_chromosome_count)

21. We are now going to add code that will allow us to count the number of annotation records for
each feature_type per chromosome. To do this we will use a nested dictionary. A nested
dictionary has dictionaries as its values . This kind of data structure is useful when you have
hierarchal data. This is an advance topic so if you are having trouble grasping the concept of a
nested dictionary at first do not worry. We are going to build our nested dictionary in a way so that
the highest level keys are chromosome number andits values are a second dictionary
whose keys are feature_types and values are the count for that feature_type . You can
access nested dictionary values with this syntax:

chromosome [chromosome_name] [feature_type] += 1. In this example the key for the top
dictionary is chromosome_name , which gives us access to its value , that happens to be a
second dictionary who's key in this example is feature_type . Before starting this problem
either edit your code or create a new script with the code below:

import sys
chromosomes = {}

Page 4/6 © Copyright by Travis J. Lawrence and Dana L. Carper

f = open(sys.argv[1l], "r")
for line in f:
if (not line.startswith("#")):
line = line.strip()
spline = line.split()
else:

continue

if (spline[@] in chromosome):
chromosome [spline[0]] += 1
else:
chromosome [spline[0]] = 0
chromosome [spline[0]] += 1

We need to change the code within the if/else statement to work with our nested dictionary.
Instead of adding one if the chromosome_name key already exists we need to add a nested if
statement or to check if the feature_type key of the nested dictionary exists. If both exist increment
the feature_type value by one. If not add the necessary keys and increment the feature_type
by one. Remember that the feature_type is the third field in the line. Attempt to do this now and
compare your work to the example below.

import sys
chromosomes = {}
f = open(sys.argv([1], "r")
for line in f:
if (not line.startswith("#")):
line = line.strip()
spline = line.split()
else:
continue

if (spline[@] in chromosome):
if (spline[2] in chromosome[spline[0]]):
chromosome [spline[@]] [spline[2]] += 1
else:
chromosome [spline[0]] [spline[2]]

else:
chromosome[spline[0]] = {}
chromosome [spline[0]] [spline[2]]

Species Occurrence Data

You have been introduced to all the tools you need to write scripts for basic data analysis. In this
section we are going to revisit a problem from worksheet 1.3.2 where we identified the families with the
highest and lowest humber of records without a species identification. We could not normalize by the
total number of records for the family using command line tools, but we can with Python. There will be
no guidance on how to solve this problem. | have provided the problem statement below:

Page 5/6 © Copyright by Travis J. Lawrence and Dana L. Carper

22. Using Python and the Plantae.csv file which family had the most records not identified to

species? Which had the
least? This is absolute count data which can be misleading because of total number of records for

each family. Normalize the number of records missing species identification by dividing by the
total number of records for that family. Which family had the highest normalized number of
missing species? Which had the lowest?

Page 6/6 © Copyright by Travis J. Lawrence and Dana L. Carper

