Introduction to Scientific Computing: A Crash Course

Presented by Travis J Lawrence and Dana L Carper
Quantitative and Systems Biology
University of California, Merced

Worksheet 2.2

In this worksheet we will be preforming similar analyses to those in worksheet 1.3.1 and 1.3.2 using
Python. We will be introducing the random module, the range function, strip and split string
methods, and the remove, count and append list methods.

Looping through Python sequences

In this section you will be using the Jupyter notebook to become comfortable using for loops to iterate
through different Python sequence types. Remember from the lecture that the basic syntax of a for
loop is:

current_value sequence_variable:

print(current_value)
statement2

1. Open a new Jupyter notebook and create a string variable with more than one letter, a list with
multiple values and an integer variable greater than 2.

2. Write a for loop that uses you string variable as the sequence_variable that prints the
current_value to the screen. What is this loop iterating through?

3. Repeat question 2 using the list as the sequence_variable .

4. A common programming task is looping through a range of numbers. The range function aids in
doing this by taking an integer and producing a sequence of numbers. Write a for loop that uses
the range function and the integer variable from question 1 asthe sequence_variable and
prints the current_value . What is the first number in the sequence? The last? How many times
did the loop execute?

Exploring genome annotations

In this section we are going to walk through reproducing some of the same analyses that we
preformed in worksheet 1.3.1. For the following questions use the Atom text editor to write your code
and the terminal to run your code.

5. Open a new file in Atom or text editor of choice and save it as genome_annotation.py

6. The first thing we need to do is open the file we want to work with. Write the required code to open

Page 1/4 © Copyright by Travis J. Lawrence and Dana L. Carper



10.

11.

12.

13.

14.

15.

16.

17.

one of the three genome annotation files. Save your script and run it from the command line. If
everything is correct you shouldn't see any output.

The next step to preforming our analyze is writing a loop that iterates through each line of the file.
Write a for loop that prints each line of the file. Which variable contains the current line? Run your
code. What was the output? Does it appear that there are extra blank lines? Remember that each
line ends with a newline character and that print method adds a newline character to everything.

The strip string method removes leading and trailing whitespace from a string. Use this method
on the variable containing the current line when printing it. Run your script. Did this change
anything?

Instead of printing each line assign the results of the strip() method to a new variable.

Add a new variable called line_count atthe top of your script and assign it the value 0 . We
will use this variable to keep track of the number of lines. Add code in the loop block to increment
this value by one for each iteration. Test your code to make sure there are no errors. Should you
see any output on your terminal?

Keeping track of the number of lines is not helpful unless we output the value. Add code after the
for loop block to print the line_count variable.

Now we are going to add code to count the number of features for each chromosome . Create an
empty list at the top of your script called chromosome . Run your script to make sure that
everything is still working.

The split string method splits a string fields and produces a list. Use the split method on
the variable you created in question 9, assign the results to a new variable and print this new
variable. What does the split() method use as its default delimiter? Now remove the line
printing this new variable from your script.

In the list created in question 13 what is the index for the chromosome number field?

The append list method will append a value to the end of the list. Using the index found in
question 14 add code to append the chromosome number field to the chromosome list we
created in question 12.

We want to count the number of times that each chromosome occurs in our chromosome list.
The count list method will take a value and return the number of elements in the last that match
that value. After the loop block use the count() method to calculate the number of times that
each chromosome appears in the chromosome list. Print the results of the count method.

To make our script easier to use on multiple genome annotation files we can open a file provided
as an argument to our script. We can add this functionality by using the sys module. Import the
sys module at the top of your script. Replace the file name in your script with sys.argv[1] . Now
run your script providing the file as an argument to the script.

Page 2/4 © Copyright by Travis J. Lawrence and Dana L. Carper



Simulating genetic drift using a Moran process

In this section we are going to create a simple stochastic simulation of genetic drift. The Moran model
simulates the process of genetic drift in a group of haploid asexual organisms containing one of two
alleles with a constant population size. At each time point an individual is randomly selected to
reproduce and an individual is randomly selected to die. The probability of a genotype reproducing or
dying at each time step is: i/N where i is the number of individuals with an allele and N is the total
number of individuals.

18. Create a new file named Moran.py . We need to create variables to hold values for the model
parameters and to keep track of the number of alleles at each time step. If there is a name in
parentheses following the parameter please put that as the name of the variable or list. The
parameters are the starting number of individuals with the A and B genotype, population size,
number of time steps in the simulation (num_gen), and the current time step (step). We will also
create an empty list that will contain elements which will represent the individuals in our population
(mstate). Do this now.

19. Set the number of individuals of each genotype to 50. Set the population size equal to the sum of
the individuals from each genotype. Set the number of generations to 10000 and the current time
step to 0.

20. The next step is to populate the list with the starting state of our simulation. We will do this using
two for loops, the range() function and the append list method. Use the first for loop to append
an "A" to the list for each individual starting with the A allele and the second loop to append a
"B" to the list for each individual starting with the B allele.

21. To run the simulation we will use a while loop. Because we have not covered conditional
statements here is the code to setup the while loop:.

(mstate.count("A") > 0 mstate.count("B") > 0@ step <

num_gen) :

Paste this code into your script.

22. During each iteration of the loop we need to randomly select an individual to reproduce, randomly
select an individual to die and increase the current time step by 1. Anytime we need to do
something that involves randomness we need to use the random module. At the top of the script
import the random module. Try using the online documentation for the random module to see if
you can find a function to return a random element from a list or sequence.

23. The random function we wantis random.choice(seq) where seq is the list or sequence we
want to randomly sample from. This function returns a value from a list with each element having
an equal chance of being sampled. We will want to use this function twice, once to select the
individual that will reproduce and a second time to select the individual that will die. Add code in
the while loop block to randomly sample from our population represented by the list created in

question 19 . Store the first random sample in a variable named reproduce and result from

Page 3/4 © Copyright by Travis J. Lawrence and Dana L. Carper



the second random sampling in a variable named death . We can also add the code to increment
the current time step by 1.

24. We need to add an individual with genotype contained in the variable reproduce . We can do
this using the append list method and the reproduce variable to add the new individual to our
population list.

25. We need to use the remove list method to remove an element from our population list. Use the
remove andthe death variable to remove an individual from our population.

26. We have a fully functioning simulation of genetic drift that is just missing output. We want to print
the time step, proportion of individuals with an A allele and the proportion of individual with a B
allele separated by tabs on each iteration of the loop. We can do this by using the count list
method and the print function. Here is the syntax for the print function:

print(tstep, propA, propB, sep='\t')

where tstep is a variable containing the current time step, propA and propB contain the
proportion of A and B genotypes respectively. The sep='\t' tells the print to separate the variables
by a tab.

Page 4/4 © Copyright by Travis J. Lawrence and Dana L. Carper



