Part 2.3:
Python: Flow Control, Conditional
Statements, and Dictionaries

Dana L Carper and Travis J Lawrence
Quantitative and Systems Biology

University of California, Merced

Flow Control

* Flow control is the process of making decisions based on the value of
one or more variables.

Flow Control

* Flow control is the process of making decisions based on the value of
one or more variables.

* This allows you to run different blocks of code based on these
decisions

Flow Control

* Flow control is the process of making decisions based on the value of
one or more variables.

* This allows you to run different blocks of code based on these
decisions

* We have already introduced you to one method of flow control

Flow Control

* Flow control is the process of making decisions based on the value of
one or more variables.

* This allows you to run different blocks of code based on these
decisions

* We have already introduced you to one method of flow control
* Loops

Flow Control

* Flow control is the process of making decisions based on the value of
one or more variables.

* This allows you to run different blocks of code based on these
decisions

* We have already introduced you to one method of flow control
* loops
 |f/elif/else statements

Flow Control: if statements

Run if code
block

Run code after
the if block

Flow Control: if statements

e if statement example

families = ['Plantaginaceae’', 'Lamiaceae', 'Orobanchaceae']
if (len(families) < 4):
print("There are less than four families"”

Flow Control: if statements

e if statement example

families = ['Plantaginaceae’', 'Lamiaceae', 'Orobanchaceae']
(len(families) < 4):
print("There are less than four families”

All if statements must begin with the keyword if.

Flow Control: if statements

e if statement example

families = ['Plantaginaceae', 'Lamiaceae', 'Orobanchaceae']
if |(len(families) < 4“:
print ("TiRre are less than four families")

The conditional statement is surrounded by parenthesis.

Flow Control: if statements

e if statement example

families = ['Plantaginaceae', 'Lamiaceae', 'Orobanchaceae']
if (len(families) < 4)
print("There are lef{s than four families”

A colon marks the beginning of an indented code block.

Flow Control: if statements

e if statement example

families = ['Plantaginaceae’', 'Lamiaceae', 'Orobanchaceae’']
if (len(families) < 4):
| print("There are less than four families")|

Indented code block that is executed if the conditional statement is True
(four spaces are used to indent the block)

Flow Control: if statements

e jf statement example

families = ['Plantaginaceae', 'Lamiaceae', 'Orobanchaceae']
if (len(families) < 4):
print("There are less than four families"

e Results

Flow Control: if statements

e jf statement example

families = ['Plantaginaceae', 'Lamiaceae', 'Orobanchaceae']
if (len(families) < 4):
print("There are less than four families")

e Results

"There are less than four families"

Flow Control: else statements

Run if code
block

Run else code
block

Run code after
if/else block

Flow Control: else statements

e [f/else statement example

families = ['Plantaginaceae', 'Lamiaceae', 'Orobanchaceae']
if (len(families) < 2):
print ("There are less than two families")

sxint ("There are more than two families")

Else statement keyword. This indicates the beginning of an else statement.
This is followed by a colon to mark the start of an indented code block.

Flow Control: else statements

e [f/else statement example

families = ['Plantaginaceae’', 'Lamiaceae', 'Orobanchaceae’']
if (len(families) < 2):

print("There are less than two families")
else:

| print ("There are more than two families")|

Indented code block that is executed when the conditional statement of the if block is False.
(four spaces are used to indent the block)

Flow Control: else statements

e |[f/else statement example

families = ['Plantaginaceae’', 'Lamiaceae', 'Orobanchaceae']
if (len(families) < 2):

print("There are less than two families")
else:

print("There are more than two families")

e Results

Flow Control: else statements

e |[f/else statement example

families = ['Plantaginaceae’', 'Lamiaceae', 'Orobanchaceae’']
if (len(families) < 2):

print ("There are less than two families")
else:

print ("There are more than two families")

e Results

"There are more than two families"

Flow Control: elif statements

Runif code W
block

Run elif
code block

Run else
code block

\4

Run code after
if/elif/else block

Flow Control: elif statements

o |f/elif/else statement example

families = ['Plantaginaceae', 'Lamiaceae', 'Orobanchaceae']
if (len(families) < 2):
print ("There are less than two families")
(len(families) > 5):

int ("There are more than five families")
else:

are between two and five families")

Keyword indicating the start of an else if statement. This is followed by a conditional
statement and a colon to begin the indented block. The indented block is executed only if
the previous if and else if statements were False.

Flow Control: elif statements

o |f/elif/else statement example

families = ['Plantaginaceae’', 'Lamiaceae', 'Orobanchaceae']
if (len(families) < 2):

print ("There are less than two families")
elif (len(families) > 5):

print ("There are more than five families")

else:
print ("There are between two and five families")

e Results

Flow Control: elif statements

o |f/elif/else statement example

families = ['Plantaginaceae’', 'Lamiaceae', 'Orobanchaceae’']
if (len(families) < 2):

print("There are less than two families")
elif (len(families) > 5):

print("There are more than five families")

else:
print("There are between two and five families")

e Results

"There are between two and five families"

Conditional Expressions

* > greater than

* >= greater than or equal
* < |ess than

e <= |ess than or equal

* == equa
* not
° or

e and

Booleans

* Booleans are a type of variable that can be set to either True or False
* Conditional expressions return a booleans

Conditional Expressions: membership testing

* The keyword ‘in’ is used for membership testing.
* This is used to test if a value is present in a Python collection (e.g. list)

* Example:

families = ['Plantaginaceae’', 'Lamiaceae’', 'Orobanchaceae']
if ("Plantaginaceae" in families):
print ("We have samples from Plantaginaceae")

e Result:

Conditional Expressions: membership testing

* The keyword ‘in’ is used for membership testing.
* This is used to test if a value is present in a Python collection (e.g. list)

* Example:
families = ['Plantaginaceae’', 'Lamiaceae’', 'Orobanchaceae']
if ("Plantaginaceae" in families):
print ("We have samples from Plantaginaceae")

e Result:

"We have samples from Plantaginaceae"

Data Structure: Dictionary

* Dictionaries consist of key:value pairs
* Keys can be any kind of variable but must be unique
* Values can by any kind of variable including another dictionary

: Keys/Words : —I Values/Definitions I—

”mRNA” — 56
“Genes” — [“Genel”Gene2”,]
5 — True

“Plantaginaceae” — [“Penstemon”]

Data Structure: Dictionary

* Creating a dictionary

example = {"mRNA":56, "Genes":["Genel","Gene2"], 5:True, "Plantaginaceae":["Penstemon"]}

When creating a dictionary the key:value pairs are surrounded by curly braces

Data Structure: Dictionary

* Creating a dictionary

example = {"mRNA":56, "Genes":["Genel", "Gene2"], 5:True, "Plantaginaceae":["Penstemon"]}

A\

Keys and their values are separated with a colon

Data Structure: Dictionary

* Creating a dictionary

example = {"mRNA":56, "Genes":["Genel", "Gene2"], 5:True, "Plantaginaceae":["Penstemon"]}

\ \

Key:value pairs are separated by commas

Data Structure: Dictionary

* Creating a dictionary

example = {"mRNA":56, "Genes":["Genel", "Gene2"], 5:True, "Plantaginaceae":["Penstemon"]}

* Accessing Values

example["mRNA"] #56
example["Plantaginaceae"] #["Penstemon"”]

To access the value of a key use the dictionary’s name
followed by the key enclosed by square brackets .

Data Structure: Dictionary

* Creating a dictionary

example = {"mRNA":56, "Genes":["Genel", "Gene2"], 5:True, "Plantaginaceae":["Penstemon"]}

* Accessing Values

example["mRNA"] #56

example["Plantaginaceae"] #["Penstemon”]
 Updating and adding new key:value pairs

example["mRNA"] = 57 #57
example["Plantaginaceae"].append("Plantago") #["Penstemon"”, "Plantago"]
example["new key"] = "new value”

